skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bodo, Gianluigi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We study the linear stability of a planar interface separating two fluids in relative motion, focusing on the symmetric configuration where the two fluids have the same properties (density, temperature, magnetic field strength, and direction). We consider the most general case with arbitrary sound speed cs, Alfvén speed vA, and magnetic field orientation. For the instability associated with the fast mode, we find that the lower bound of unstable shear velocities is set by the requirement that the projection of the velocity on to the fluid-frame wavevector is larger than the projection of the Alfvén speed on to the same direction, i.e. shear should overcome the effect of magnetic tension. In the frame where the two fluids move in opposite directions with equal speed v, the upper bound of unstable velocities corresponds to an effective relativistic Mach number $$M_{\rm re}\equiv v/v_{\rm {f}\perp }\sqrt{(1-v_{\rm {f}\perp }^2)/(1-v^2)} \cos \theta =\sqrt{2}$$, where $$v_{\rm {f}\perp }=[v_{\rm {A}}^2+c_{\rm s}^2(1-v_{\rm {A}}^2)]^{1/2}$$ is the fast speed assuming a magnetic field perpendicular to the wavevector (here, all velocities are in units of the speed of light), and θ is the laboratory-frame angle between the flow velocity and the wavevector projection on to the shear interface. Our results have implications for shear flows in the magnetospheres of neutron stars and black holes – both for single objects and for merging binaries – where the Alfvén speed may approach the speed of light. 
    more » « less